Sustained delivery of low-dose anti-CTLA-4 by genetically engineered encapsulated cells drives tumor response and prolongs survival in a colorectal cancer model

Julien Grogne,b,d, Emily Charrier,b,d, Remi Vernet,b, Muriel Urwyler,b, Olivier Von Rohr,b, Valentin Saingier,b, Fabien Courtois,b, Aurélien Lathuilière, Adrien Engel,b,d & Nicolas Mach,b

Department of Oncology, Geneva University Hospitals and Medical School, 1211 Geneva, Switzerland. Centers for the Department of Research (Oncology, Urology, Oncology, Division, Geneva University Hospital and University of Geneva, Geneva, Switzerland. *Department of Molecular Biology and Genetics, University of Geneva, Geneva, Switzerland. **Maxivax SA, 1205 Geneva, Switzerland.

ABSTRACT

Systemic therapy with CTLA-4 blocking antibody (aCTLA4) restores endogenous antitumor immunity and induces remarkable long-term clinical benefits in patients with melanoma. Yet immune-related side effects remain a major hurdle to extend its label to many more types of cancer. Intra- and peritumoral administration of aCTLA4 has recently emerged to optimize its dose/efficacy ratio while preventing its on-target, off-tumor systemic toxicities. Sustained delivery of low-dose aCTLA4 by genetically engineered encapsulated cells (MVX-3) could offer a promising option for cancer treatment addressing the shortcomings of systemic therapy.

MATERIALS AND METHODS

RESULTS

- **Study Design**
 - D0: MC38 tumor inoculation in hCTLA-4-KI mice
 - D10: Peritumoral implantation of MVX-3 or i.p. injection of ipilimumab (low e4)
 - D17: Sacrifice of satellite mice for organs flow cytometry
 - Sacrifice when mice have a tumor > 1000 mm³ or a high disease score

- **Experimental intervention (MVX-3)**
 - Transplantation of human myeloid cell line (MVX-3)
 - MVX-3 capsules: Encapsulated aCTLA secreting cells
 - Local delivery of aCTLA4

CONCLUSIONS

- Peritumoral administration of MVX-3 induced durable complete tumor rejection (2/7) and tumor growth control (4/7) when administered at doses 1’000 times lower than i.p. ipilimumab, whereas rapid tumor growth without any tumor rejection were observed in negative control mice.
- I.p. ipilimumab induced durable complete tumor rejection (9/12), while treatment related toxicities upon dosing led to premature mice termination (3/12).
- MVX-3 was found as equally effective as i.p. ipilimumab in decreasing the proportion of CTLA4+ helper and regulatory T cells in the tumor at Day 7 post treatment.
- Survival was also improved by MVX-3 compared to control. These findings suggest that a sustained, controlled delivery of low-dose aCTLA4 by genetically engineered encapsulated cells could achieve similar therapeutic benefit as the systemic therapy, without the commonly associated severe toxicities. The safety and biological efficacy profile of MVX-3 encourage further preclinical and clinical explorations.